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MODEL THEORY VIA SET THEORY 

BY 

JOHN E. HUTCHINSON 

ABSTRACT 

We develop a technique for applying models of set theory to obtain results in 
the model theory of infinitary languages. Some results on A-logics are also 
discussed. 

0. Introduction 

We develop a general technique for obtaining various classes of results in 

model theory by constructing certain models of fragments of true set theory. 

In the first section, the necessary machinery is set up. In particular, formalisa- 

tion of the metalanguage and of various logics is discussed. No new ideas are 

involved here, but we take the opportunity to establish our conventions and 

discuss some points which will be important later. We also list the results on 

models of set theory which we will need. Of these, only Theorem 1.5 is new, the 

others appear in [6], [7], and [12]. 

In the second section, the method is applied to obtain results on Hanf 

numbers, two cardinal theorems, undefinability of various well-orderings, com- 

pactness, and axiomatisability, for the logics L,,2, L~,, LO, etc. The results are 

not new, but the proofs are shorter than the standard ones, and indeed much 

more direct, modulo the results on models of set theory. 

In the third section we take the opportunity to collect together a few results on 

A-logics, only one of which however is proved using models of set theory. 

An important feature of the technique we use is that only certain set theoretic 

absoluteness conditions (as discussed in Section 1), in passing back and forth 

between the real world and models thereof, are used. Thus only minimal 

properties are required of the logics involved, and in many cases it is possible to 

single out larger classes of logics to which the results in Section 2 apply. 

However, we will not do this. 

Except in the proof of Theorem 3.5, the absoluteness conditions used are 
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essentially cardinality ones. By more delicate constructions, it is possible to keep 

certain classes of orderings absolute. In particular, building on the above 

mentioned theorem, J. Stavi and I have recently used these methods to obtain a 

compact axiomatisable extension of LQ by adding quantifiers corresponding to 

various stationary subsets of to1. Shelah [18], however, earlier obtained similar 

results using different techniques. 

Finally, it should be mentioned that the technique gives a useful handle on 

certain A-logics. 

I wish to thank my thesis advisor, H. Friedman, to whom this paper owes 

much. In particular, my first exposure to arguments of this type was Friedman's 

original proof of the failure of interpolation for A(LQ) in [5] (although there 

later proved to be a direct argument, cf. Theorem 3.1). The model of the real 

world which Friedman used was well-founded, but it turns out that the real 

power of the method lies in taking non-well-founded models. However, Fried- 

man has also used non-well-founded models before in related situations, in 

particular in his proof of Lindstrom's characterisation of Lo,,~ [4]. 

1. Preliminaries 

We will be discussing various languages, and logics associated with these 

languages. The metalogic in which we carry out these discussions, and the 

enderlying metatheory, will be ZFC, Zermelo Fraenkel set theory with the 

axiom of choice. The techniques we develop rely heavily on the fact that the 

metalogic can be formalised, but we only actually carry out the formalisation so 

far as is necessary or illuminating. 

The cumulative hierarchy of sets, V-- (V,  E),  is called the real world (of 

mathematics). To fix our ideas, it is helpful and indeed desirable to consider this 

model of the metatheory. A theorem in this paper, e.g. Theorem 2.1, is actually a 

metatheorem, or, as in the case of Theorem 1.1, a metatheorem schema (in both 

cases, after appropriate universal quantification). We may consider such a 

theorem as a result about (the members of) V. We assert something to be the 

case in V only if it is a provable consequence of ZFC. Unless noted otherwise, all 

future discussions are carried out in the metalogic, and as such may be taken as 

statements concerning the members of V. A set is a member of V, a class is a 

definable relation on V (definable in the metalogic, perhaps with parameters 

from V). 

LANGUAGES AND LOGICS. A language is a set of relation, function, and 

constant symbols, such symbols being regarded as sets in the usual way. Unless 
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noted otherwise, all languages are subsets of HF (the set of hereditarily finite 

sets), and hence countable. Languages will usually be written L, K , . . . .  

A structure for L, or L-structure, is a pair ~ = (M, / )  where M is a non-empty 

set called the universe of 932, and f is a map assigning to each member of L an 

interpretation in ~92 of the appropriate kind. ~9~ will often be written as 

(M, P~ , .  • • ) where P~  = f(P),  or even as (M, P , . . .  ). Structures will generally 

be denoted ~ ,  9~, .ql, . . . ,  with universes M, N, R , . . .  respectively. 

A logic is a function * assigning to each language L a pair (L*, ~ ) ,  where L* 

is a (possibly proper) class called the class of L-sentences of the logic, and k =* is a 

relation between the L-structures and L-sentences of the logic. We call I =* the 

satisfaction relation for L in the logic *, and usually write ~ k =* ~p for (M, ,p)E 

I =*, where ~ is an L-structure and ,p an L-sentence of *. If ,l, is a set of 

sentences, ~1=*¢  ~ means V~p E ~ (~ l=* ,p ) .  If no confusion arises, we suppress 

I =* and denote the logic by L* (somewhat analogously to denoting a function f 

by f(x)). Instead of b* we often write ~*, ~L, or even I =. 

For particular logics it is usually more convenient to define first a notion of 

formula, such that every sentence is a formula (but not conversely), and to define 

satisfaction by induction on formula complexity. ~ b ~ p [ a , , - - . , a , ]  will then 

have its usual meaning. L * will also be used to denote the set of formulae of the 

logic. 

L®~ is defined as usual. If x is an infinite cardinal, L , ,  = H(K) N L®, (where 

H(K) = {x: I TC(x)l < ,~ }). L ~  is often denoted L. L®=Q is defined as for L®~, 

except that formulae of the form Qwp, where v is a variable and ~ is already a 

formula of L®~Q, are allowed in the inductive definition. Qwp is interpreted as 

"there exist at least ~ many v such that ,p". L, ,Q = L®~Q fq H(K), LQ = L~Q.  

If ~t 3 HF is a transitive set, L ,  = L=~ 1"3 ~ and L~Q = L ~ Q  f3 M. If further- 

more L~ is closed under subformulae, the finitary logical operations, and 

changes of variables, L~ is called a fragment. 

THE LANGUAGE OF SET THEORY AND FORMALISING THE METALANGUAGE. We now 

discuss a particular language S = {e }, the language of set theory, and its 

structures. Here e is a binary relation symbol. Remember S ~ V, S is not the 

metalanguage. S-structures will usually be written ~ = (A ,E) ,  ~ =  (B,F), 

= (C, G ) , . . . .  Every set A gives rise to the S-structure (A, E rA),  which we 

usually just write as A. 

Our S-structures will all satisfy some reasonable set theory. By KP, Z, Z F  we 

mean the set of Kripke Platek, Zermelo, and Zermelo Fraenkel axioms 

respectively. If K is a set of axioms, KC is K augmented with the axiom of 

choice. From our point of view, KP E V, ZFC E V, etc. 
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If 95[ is an S-structure, by the standard part of 9.l, sp (9.1), we mean the set of all 

a E A such that there is no infinite descending ~equence . . .  Ea,E . . .  EalEa. 
We often identify sp (92) with its transitive collapse. The ordinal of the standard 

part of 92, osp(92), is the supremum of the ordinals in sp(gA). If A is transitive, 

o ( A )  is the supremum of the ordinals in A. In this case A = sp (A )  and 

o (A)  = osp (A). 

The following is a useful bit of notation: if a E A then aE = {b E A:  bEa}. 
Thus if 92 = (A, E ) then aE = a n A. If 92 = (A, E )  C ~  = (B, F)  and a E A, then 

a is fixed (in passing f rom 92 to ~ )  if aE = av, a is enlarged if a~ ~ aF. 

To each metaformula P = P(xl ,"  ", xk) there is associated in a natural way an 

S-formula " P "  E HF, the formal analogue of P. If 92 = (A, E)  is an S-structure, 

a l , . . . ,  ak E A, then 

921 = ' ' P ' ' [ a . . . . , a ~ ]  iff P~(a~,...,a~), 

where P~ is the relativisation of P to 92. The proof is by induction on the 

complexity of P. If 92 ~ "P"[a~,  - • -, a~] we say: P(al ,"  ", a~) in (or inside) 92. By 

an abuse of language, we will refer to P(a~,. •., ak) as a metaformula, and in the 

previous context write 92 ~ " P ( a ~ , . . . ,  ak)". 

Suppose 92 ~ ZC, say. By to g we mean the unique a E A such that 92 ~ " a  = 

to". Similarly for to~, TC~(x), (xy) ~, etc. a E E92 will mean TC({a})CA and 

(TC({a }), E ) -~ (TC~({a }), E )  under the identity map. 

LAN6UACES AND LOgiCS Wm~[N S-STRUCtURES. Suppose now 92 ~ ZC. We can 

talk about the various languages, logics, satisfaction, etc., inside 92. In the 

following, suppose the language L E E 92. Then L is a language inside 92 since 

the definition of being a language is given by a E0 metaformula. 

If the set ~92 E A and ~IR is an L-structure in 92, it will not necessarily be an 

L-structure in the real world (every structure is an ordered pair, ~R may not even 

be an ordered pair in the real world). However,  we can associate with ~2 a real 

world L-structure ~0~E in a natural way. For suppose ~[R = (M, f)  inside 92. Then 

by definition ~ E  = (Me, f*); where for constant symbols c E L, f*(c)  = a iff 

f ( c )  = a in 92; for function symbols F ~ L ,  f*(F) (al , . . . ,a , )  = a iff f(F) 
( a ~ , . - . , a , ) =  a in 92; and for relation symbols R E L, (a~, . . . ,a , )Ef*(R)  iff 

(a~,..., a . )~  f (R)  in 92. Although this definition disagrees with the previous 

definition for a~ where a E 92, there should be no confusion. 

If 92 = (A, E )  = (A, E ), then ~RE = ~ [ A, the restriction of ~R to M O A. 

Now suppose that ~ is a formula of some logic *, and ~p E ~ 92. We will be 

interested in those 92 such that 92 ~ " ¢  is a formula of *", and such that if, in 92, 

is a structure for the language of ¢, then for all a , - . . ,  a, E ~RE 



290 J.E. HUTCHINSON Israel J. Math. 

~ p [ a , . . ' , a n ]  inside 9/ ¢ ,  ~ l= ~p[a~, . . . , a . ] .  

9/~ Z C  is more than enough for the above to go through in case * is L ~ .  If * is 

L~,~ then we need moreover that 9 /~"1TC(~)I  = no". If * is L~,~Q or LQ, the 

notions of having cardinality=>N~ and cardinality=<No should be absolute 

between 9/ and V. In other words [ (oJ~)~ [_-> N~ and ](W~)E [ = No; in particular 

[ (OJ~)E [= N~ and I(w~)E [= no are enough. We discuss the restrictions on 9/for  

other logics as the need arises. 

CONSTRUCTING S-STRUCTURES. We turn to the problem of constructing various 

nice S-structures. Suppose F = {P~:i = 1 , . . . ,  n} where P~ = P~(x~,...x~) are 

metaformulae. Then 9/= (A, E ) < rV will mean 

" [ V x j E A [ P , ( x , , . . . , x k ) C z ~ A ~ " P , ( x , , . . . , x k ) " ] } .  A ~ Z C  & i~ i=1 

Such a are easily obtained from the following theorem. F will not normally be 

explicitly stated, but will be some finite set of metaformulae, sufficiently large to 

enable the argument in hand to carry through. We then write A < V. In 

particular, if ~ is an L-structure we can choose F and A with ~R E A < V so 

that L E E A and A ~ " ~  is an L-structure".  

THEOREM 1.1. (F is a finite set of metaformulae.) Suppose X is a set. Then 

there exists A D X, [ A [ = [ X[ + no, such .that A < r V. 

PROOF. From Levy [13, p. 48] we can find a so that X C R ~ < r  V. But 

R ~ Z C ,  and we can choose A so X C A < r R ,  and [ A [ = [ X [ + N o  by the 

downward Lowenheim Skolem theorem. 

From the model A = (A, E ), we build non-standard models by means of the 

following theorems. 

THEOREM 1.2. Let 9/= (A, E)  ~ ZC, I A I = no, and c be a regular cardinal in 

9/. Then there exists 2] > 9/such that each a E c~ remains fixed, c is enlarged, and 

I B I = no. Furthermore we may require either of the following two possibilities: 

(i) there is no least new ordinal below c; or 

(ii) (if 9 / ~ " c ~  w")  there is a least new ordinal below c. 

In the latter case, if we call the least new ordinal k, and if for some s E A, 9/~ "s is 

a stationary subset of c",  we may also require that ~ kes. 

The proof is in Hutchinson [7]. Whereas the result is stated there for 

9/ ~ ZFC, as noted in [7] replacement is not necessary. For many applications we 

do not need (i) and (ii); the corresponding weaker result is proved in Keisler and 

Morley [12]. 
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If we take c = to~ and iterate Theorem 1.2 n~ times, then I (t°~)F I = n0 and 

] (to~)F I = n~, giving the absoluteness conditions required for L~,~Q and LQ. In 

more delicate applications, such as the construction mentioned in the Introduc- 

tion of the compact extension of LQ, and in Section 3, cardinality absoluteness is 

not sufficient. We need to look at the possible order types of (to~)F. These 

orderings are classified in [8]. 

The next theorem is a consequence of theorems 4.4, 4.5, and the succeeding 

remarks, in [12]. 

THEOREM 1.3. Let 92 = (A, E ) ~  ZC, l A l = no, c be a cardinal inside 92, a be 

a regular cardinal inside 92, and 92t="b = ~a(C)". Let (X, < ) be an arbitrary 

linear ordering. Then there exists ~3 = (B, F) > 92 such that every member of aE 

remains fixed, I cF I = no, (X, < ) C (bF, F), and (X, < ) is a set of indiscernibles for 

(~3, a)a~A over cF. [] 

NOTE. In assuming 92~"b ="  a(c)"  we are supposing 92 satisfies sufficient 

replacement for the Beth operation to be definable and have reasonable 

properties. A similar comment  applies to Theorem 1.5. 

REMARK. For the definition of indiscernibles Over a subset of a structure, see 

Keisler [10], p. 88. From the proofs in [12], (X, < ) can be seen to be a set of 

indiscernibles over c~ since if d E c~ and d = t (x , , .  •., x , )  for xl < • • • < x, in X, 

then d = t ( x ~ , . . . , x ' )  for any xl < "-" < x" in X. Here t is a term in a certain 

expansion, by function symbols, of S t) { a : a E A }. 

Theorem 1.4 and its proof are very similar to theorem 2.2 in Friedman [6]. 

Alternatively, as pointed out by the referee, the result follows easily from the 

pretty theorem 7 of Nadel [17]. It is the analogue of Theorem 1.2 (i), where 

instead of fixing the elements of CE we fix the members of a countable admissible 

set .d. See the accompanying diagram. Admissible sets are discussed in Keisler 

[10]. 

~ = (B , , -O 

\.o;.. / / 
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THEOREM 1.4. Let ~¢ be a countable admissible set, ~ = ( a , E ) ~ Z C ,  

gt E E 9~, and a~, . •., a. E A. Let S' be the extension of the language S of set 

theory obtained by adding constant symbols .~, t L , "  ", ti,, { ti : a E M } (where the 

map a ~ (t is recursive over M ). Let The a theory in S ~ which is E~-definable over 

M. Suppose (~ ,M,  a~, . . . ,  a,, a)oe~ = T. 

Then there exists ~3 = ( B , F ) ~  Z C  such that I B l  = l~o, a E E ~3 if a E M, 

o (M) = osp (~3); and there exist M*, a * , . . . ,  a*~ E B (x * is the intended interpre- 

tation of ~,) such that (~3, M * , a * , . . . , a * , a ) a ~  = T. Furthermore, we may 

suppose that (M*, F) is an end extension of (kF, F) which is an end extension of 

(M, E ), for some k E M*v. 

PROOF. Let S"=  S'U{/~}, where g is a new individual constant with 

intended interpretation k. Let T' be the theory in S"~ with axioms: 

T +  ZC; 

Vv(ved~--~W v = b ) ,  each a ~ M ;  
b E a  

tie/~, each a E M ;  

fled; 

/( is transitive; 

..~ is transitive. 

T' is consistent by Barwise compactness. By theorem 7 of [17] there is an 

admissible set :~ D M, having the same ordinals as M, which contains a model 

= (B, F) of T'. All that remains to be checked is that o(s¢)= osp(~). But 

d C B implies o ( d )  _-< osp(~), and ~ E ~ implies osp(~) -< o ( ~ )  = o(M). 

REMARK. The theorem is usually applied in the following way. M will be a 

countable admissible set, and a finite number of metaformulae P(M, a l , "  ", a,)  

will hold in the real world. Taking M E  E A, a~ , . . . , a ,  E A, A < r V  for 

sufficiently large K, and then applying the theorem, we obtain ~ such that each 

P ( M * , a * l , . . . , a * )  holds in ~ .  

In particular, we may suppose ~ =  "M* is admissible". Now suppose some 

R C.ff is Ez-definable over M (usually R will be a set of sentences in some logic). 

Thus R = {x E M :  M= " Q ( x , b ~ , . . . ,  b,.)"}, where Q is a Et-metaformula and 

b~, • •., b,, E M. Then R ~ A since A satisfies separation, and so R * E ~ where 

inside ~ ,  R * =  { x e M * ~ " Q ( x ,  b l , . - . ,b , . ) "} .  Moreover, working in ~ ,  if r = 
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{ x e k : k ~ " O ( x ,  b l , . . . , b , , ) " } ,  then resg* since sO* is admissible and r is a 

Ao-definable over ~¢* subset of k e~¢*. Also since (sO*, F)  is an end extension of 

(kv, F)  which is an ~end extension of (sO, E ), and Q is ~1, it follows R C rF C R *. 

In conclusion, there is an r E A ~ such that R C rF C R*. 

We now come to the analogue of Theorem 1.3 in which every member  of some 

countable admissible ~¢ remains fixed. 

THEOREM 1.5. Let  sg~  H F  be a countable admissible set, 91 = (A,  E ) ~  ZC,  

sg E E 2l, and a~ , . . . ,  a, E 91. Let  a = o(~t l ,  c be a cardinal inside 91, and 

b = 11~ (c) inside 91. Let  S'  be the extension o[the language S o[set theory obtained 

by adding constant symbols .~, &, t i , , . . . ,  ~i,, /~ 6, {~i: a E sO} (where the map 

a ~ a is recursive over sgl. Let  T be a theory in S'~ which is Y.~-de]inable over sg, 

and suppose (91, sg, a, a~, . . ., a., b, c, a ) , ~  = T. Let  (X,  < ) be an arbitrary linear 

ordering. 

Then there exists fO = (B, F ) ~  Z C  such that a E E f~ ira E sO. Moreover, there 

exist s# *, a *, a *, . . ., a *,, b *, c* E B (x * is the intended interpretation o[ ~ ) such 

that [cFI = I% and ~ ' = ( f O ,  s g * , a * , a * , . . . , a * , , b * , c * , a ) ~ =  T + &  = 

o ( ~ ) + / ~  = l~(e) .  Furthermore (X,  < ) C(bF, F),  and (X,  < ) is a set o[ indis- 

cernibles in f~' over cr with respect to S '  

PROOF. The easiest method is to first apply Theorem 1.4. The hypotheses 

remain unchanged, except that we now need to distinguish between ~¢ and the 

interpretation ~o  of ~ .  Similarly a ° will interpret &. Furthermore,  osp(91)= a 

and a ~ E 91 for each a E ~t. 

We will just sketch the rest of the proof. Extend S '  ~, to a Skolem fragment S* 

(as in [10], p. 67). We cannot pick definable Skolem functions in 91, but via the 

axiom of choice in 91 we can pick definable functions [~ satisfying 

(1) Vv, Eb,...,v. eb(3v¢(v,v,, . . . ,v,)~¢(.f~(v,, . . . ,v.),v,, . . . ,v,)),  

for each ~ = ~p(v, v , , . . . ,  v , ) E  S* s i .  

Let {~ok : k < oJ } be some enumeration of the formulae of S~. In the usual way 

we proceed by induction along this enumeration building a set T'  of sentences of 

the form q~(xl, • • ", x,)  where x t , "  ", x, E X and ¢,(v~, • •., v.) E S*~. At each step 

in the procedure there will be some definable (in 91) I C bF, such that I I[ = :1~ (c) 

inside 91, for some non-s tandard {3 < a °. Furthermore,  each q~(x,, • •., x,)  so far 

obtained, where x~ < . - .  < x,, will hold in 91 for x~, . . . ,  x, interpreted by any 

increasing n-tuple of members from I. 

We can ensure that 
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( 

(i) IZC + T +  5t =o(~g)+ b=%(6)  

+{Vv(vea~Wb~, v =-b):a E sg} + (1) }CT'; 

(ii) (~ok(x,," . ,x , )~q~k(x ' , . . . ,x ' ))E T'; 

where x~<. . .<x . , x ' ,< . . .<x ' , ;  

(iii) q~k(x~,"' ,x . )ET' or - ~ ¢ k ( x ~ , " ' , x . ) E T ' ;  

(iv) W ~ ( x ~ , . . . , x , ) E T ' ~ ( x ~ , . . . , x , ) E T '  f o r s o m e  q~Eqb; 

(v) (t(x, , . . . ,x,)e6)E T' ~ (t(x~,'" " ,x . )=  t (x ' , , '" ,x ' ))E T', 

where x , < . . . < x , , x ' ~ < . - . < x ' ,  

and t(v~,...,v,) is a term in S* 

The argument of course uses the Erdos-Rado Theorem. For any two ordinals 

/3, y < a  °, write 3 ' '~ /3  if 3 ' + u < / 3  for all standard u. Then for any non- 

standard/3 there is a non-standard 3' </3, and if 3' < /3  then : l~ (c )~  (~(c))7 is 

an easy consequence of the Erdos-Rado Theorem. 

Build a model of T' from terms of S*.~ applied to X. Restricting to S' we have 

the required structure. In particular, that [cF[ = No and ( X , < )  is a set of 

indiscernibles over c~ with respect to S~, is a consequence of the fact that if 

t (x~ , . . . , x , )=dEcv  where x~<. . .<x . ,  then t(x't, . . . ,x' ,)=d for any x~< 

• . . < x ' .  [] 

REMARKS. (a) The trick of first making s¢ non-standard is due to Friedman. 

Our original proof was much longer. 

(b) Suppose R C~1 is E~-definable over ~.  Then as in the Remark following 

Theorem 1.4, we may suppose R C R ~-. In fact, by a slight modification of the 

proof of Theorem 1.5, we may even suppose R Crr C R ~  for some r E ~1~:. 

2. Results in model theory 

We will see how many classical model theoretic results are almost immediate 

consequences of the existence of various models of set theory. Standard notation 

is used; [10], henceforth referred to as I.L., and [16], are references. Recall our 
conventions regarding A < V as stated immediately preceding Theorem 1.1. 

The following two-cardinal theorem is due to Keisler, I.L., p. 116, and is the 

natural extension to L~,~ of a result of Vaught for L~.  Notice that our proof 
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does not require the rather complicated theorem 28 from p. 1 1 1 of I.L. The role 

of R in theorem 28 is, in a certain sense, taken over by the well-founded relation 
E .  

THEOREM 2.1. Let ~)~ = (M, U , . . .  ) be an L-structure with I MI = ~, I u I -- 
K > A > No. Let L~ be a countable fragment of L .... Then there exist structures ~, 

such that 92 < L ~ ,  92 < L ~ ,  I 92 I = ~lo, I ~1 = •,, and U ~ = U ~. In particular, 

if T is a countable theory in L~,~ and T admits (K, A) for some infinite cardinals 

K > A, then T admits (to,, to). 

PROOF. Take A < V where M CA, ~ ,  K,A ~ A, and I AI  = Mo. By ~, 

applications of Theorem 1.2 take ~ = (B, F ) >  A such that A remains fixed, 

I(A *)~ [ = 1~,, I B [ = 1~,. Let 92 = ~ I A and 9] = ~3~F. 

It is easy to check that all the required conditions hold. However, as an 

illustration, we do it this time in detail. 

Suppose ~p = ~ ( x , , . - . , x , ) ~  L~, a l , "  ", a, ~ M n A, and ~ q ~ [ a ~ , . . . ,  a,]. 

Then Yf i~q~[a , . . . ,a , , ]  inside ( A , E )  since A < V. Since ~p E.ff,  M is closed 

under transitive closure, and sg CA, it follows q~ E E A .  Hence 

~ R r A ~ q ~ [ a , . . . , a , , ]  and so 92 = ~ I A  < L~,~. 

Any a E s4 is countable, so is countable in (A, E ). But A _-> 1%, and aay_thing in 

A of cardinali ty= < A in A remains fixed in passing to ~ .  In particular a E M 

remains fixed and so ~ E E ~.  It now follows 92 < ~,,.~ by a similar argument to 

before. Notice that A ~ Z C  justifies our applying Theorem 1.2. 

U has cardinality A in A, so remains fixed in passing to ~ .  In other words 

U fq A = U~, i.e. U 'J~ --- U '~, and both have cardinality N,,. Clearly [ 92 1 = l~o, and 

13il = N~ since [(h*)~[ = [B [ = N~. [] 
We next show that the Hanf number of L,o,o, is _-< '%,. By the usual example it is 

then precisely "to,. See I .L .p .  69, p. 78. 

THEOREM 2.2. Let L~ be a countable fragment of L .... T a set of sentences in 

L~. Suppose that T has models of power a~, for all a < to,. Then: 

(i) T has a model which has an infinite set of indiscernibles in La ; 

(ii) r has models in all infinite powers. 

PROOF. Take A < V such that M C A ,  M, T ~ A ,  and [A[=1%. Using 

Theorem 1.3 with c = to and a = to~, take 93 = ( B , F ) > A  such that each 

member of to, h A  remains fixed, (X,<)C(a,o , )v ,<) ,  and ( X , < )  is a set of 

indiscernibles for ~ ,  where (X, < ) is an arbitrary linear ordering. 

Inside ~ , ' t he re  exist models of T of arbitrarily large cardinality below "t,~,. 

Select X with some proper initial segment Y of arbitrary cardinality, and take 
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b E B with Y < b < '~,~. Inside ~ select ~ ~ T so that b C M. Then ~Rv ~ T and 

has cardinality _>- I Y I. By downward Lowenheim Skolem theorem there is a 

model of cardinality precisely I Y[. This proves (ii). 

To prove (i), we need to further stipulate that (X, < ) is a set of indiscernibles 

for (~,  a)o~A over (to~)F. Theorem 1.9 certainly allows this. Notice that '%, = 

:1~i(~1), and ~ _-> to~. Now there is in the real world a function g with domain to~, 

such that each g(a) is a model ~ ,  ~ T where the universe of ~ o  is %. Then g 

has the same property in ~ .  It follows that if l El --> ~o and in ~ ,  g(b) = ~ ,  then 

~ ~ T and Y is a set of indiscernibles for ~ in L~. [] 

REMARK. There is a direct argument from (i) to (ii) as in I .L .p .  78. 

Theorem 31, I .L.p.  117, on homogeneous structures, theorem 12 (i), p. 49 on 

the undefinability in Lo,,,o of the class of well-orderings, theorem 23, p. 88, 

Morley's two-cardinal theorem for L .... and the results in [9], can easily be 

proved in a similar manner. 

Next we come to logics over countable admissible sets. Theorem 2.3 is 

theorem 12 (ii), I .L .p .  49. 

THEOREM 2.3. Let sg C HC be a countable admissible set. Let the language L 

contain a unary relation symbol U and binary relation symbol <. Let do be a 

theory in L~ which is Yt-definable over sg. Suppose that for all a < o(s¢), dO has a 

model ~ 0 ~ = ( M , U , < , - . . )  such that < is a linear ordering of U and (a, <) 

C(U, < ). Then do has a model containing a copy of the rationals. 

PROOF. Take A < V such that .d C A, and ~ ,  L, do E A. Then ,ff E E A and 

A ~ZC.  

Apply Theorem 1.4 and the following remark to ( A , E )  to obtain 

~, .ff*,L*,do*. We may suppose that, inside ~ ,  

(1) Va < o (M*):I~IR = (M, U, < , . . .  )V~, ~E do* 

(~l=~,n  < i s a l . o ,  of U ^ ( a , < ) C ( U , < ) ) .  

Select a non-standard b for a in (1), and let ~ be the L *-structure asserted to 

exist in ~ ,  so that ~lRt= do* in ~3. But do Cdo*, and ~ • (E ~ for each g, ~ do, hence 

MF r L ~ do and contains a copy of the rationals. [] 

The following two-cardinal theorem for L~, ~t countable admissible, is due to 

Barwise and Kunen [2]. They actually have a result which holds for arbitrary (not 

necessarily countable) admissible ~t. 

THEOREM 2.4. Let ~ 7 ! HF be a countable admissible set. Let L be a language 

containing the unary relation symbol U, and do a theory in L~ which is 
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E~-definable over ~ .  Suppose that for all a < o (sg) there exists a cardinal K >--_ to 

such that • admits (%(K),K) .  Then: .  

(i) qb has a model ~J~ = (M, U, . . . ) such that I U I = No and there is an infinite set 

of indiscernibles over U in L~ ; 

(ii) For all cardinals A >- to, • admits (A, to). 

PROOF. Select f so qb admits (a~( f (a ) ) , f (a ) )  for all a < 3' = o(M). Take a 

cofinal subsequence (/3°) of o ( ~ )  so that f(/3~) is non-decreasing, and let 

K = sup~ {/(/3~)}. Take A < V with M C A ,  ~ ,  T,/,(/3~), K ~ A ,  and IA [= No. 
Then d E E A and A ~ ZC. Use Theorem 1.5 to construct ~ = (B, F) where 

c = K. Thus we may suppose I r~ I = No, X C (11~ (K))F for X = (X, < ) an arbitrary 

linear ordering, and indeed that X is a set of indiscernibles over KF. 

In the real world and hence in ~ ,  T admits the pair (~o(/(/3o), f(/3~)) for each 

a. Select X with an initial segment Y where [ Y[ = A, and take b ~ B with 

Y < b < :I~(K). Inside • select ~ T so that b C M and U'~C K. Then in the 

real world 9J~F ~ T, I M~ I => [ Y I, and I U %  t = N0. By the downward Lowenheim 

Skolem theorem (ii) is established. 

To prove (i) we need only note that every formula in L~ may be coded as an 

integer and so certainly as a member of K, and that this then holds in ~3. Thus the 

fact that (Y, < ) is a set of indiscernibles in ~ (strictly, ~ augmented with certain 

constant symbols) over K~ implies that (Y, < ) is a set of indiscernibles in g)2F 

over U with respect to the logic L.~. [] 

That the Hanf number of L~ is '%(~, for s~ countable admissible, follows 

easily from the above result. Alternatively, it may be proved directly as above, 

although a little more quickly. 

Compactness and axiomatisability for L O  and L~Q can also be shown by our 

methods. We give two examples. 

THEOREM 2.5. The set of universally valid sentences in L Q  is recursively 

enumerable. 

PROOF. Suppose q~ is a sentence of LQ. Then we claim 

(1) ~0 is valid ¢:> ZC~"q~  is valid".  

Remember that ~o E HF, and "~0 is valid" is an S-sentence. 

Suppose then that q~ is not valid, hence --nq~ has a model, and so taking A < V, 

we have (A, E )~  "--n~ has a model" and so (A, E )~ --n"q~ is valid" But A ~ Z C  

and so ZCI~"q~ is valid". 

Conversely, if ZCI,~"~ is valid", then there is a countable 91= 
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( A , E ) ~ Z C + " ~ q ~  has a model".  Apply Theorem 1.2 N~ times to construct 

2 3 = ( B , F ) > ~ l  with I(to )l= ,to, Then in ~3 there is a model 

~92~ ~q~, and so ~ v ~ - ~ 0 ,  thus ~ is not valid. 

Thus 

~¢ is valid ¢¢, :Ix E HF (x = "q~ is valid" ^ Z C ~  x). 

By the Godel completeness theorem for S, it follows that the set of valid 

sentences of LQ is recursively enumerable. [] 

The next result, and also completeness for L~Q, are both due to Barwise 

(unpublished) and to Keisler [11], independently. 

Assume in the theorem that M is a countable admissible set and the language 

L CM is a X~-definable set over M. 

THEOREM 2.6. L~Q is compact in the Barwise sense. 

PROOF. Suppose qb is a set of sentences of L~Q which is X,-definable over s¢, 

and suppose every M-finite subset of • has a model (x is M-finite if and only if 

x E M). We wish to show • has a model. Take A < V such that M CA, M E A. 

Construct ~3 from ( A , E )  as in Theorem 1.4. Construct ~ = ( C , G ) > ~  by 

Theorem 1.2 so that to = to~ remains fixed, and I(to~)o [= N~. 

Let M*,L*,ep* be the interpretations in £3, and hence in 6, of M,L, ap 
respectively. Since M, L , ~  are countable in V, hence in A, we may suppose 

M*, L * , ~ *  are countable in ~3, and hence fixed in passing to ~. 

We may assume that in ~ every M*-finite subset of qb* has a model. By the 

Remark following Theorem 1.4, there is a , ~ s C * = s ¢ *  such that 

q~ C ~ v ( =  ~0~)Cqb*(= ~*). In ~,~0 has a model ~Y~, and so ~l~ I L ~ ,  since 

I (to~)~ [ = No and I(to~)o [= N~. [] 

3. A-Logics 

The sigma logic, E(L*), is defined as follows. Sentences of E(L*), in the 

language L, are objects of the form 3R~, where ~ is a K*-sentence for some 

language K = L t3R, with R a set of relation symbols not in L. If 93~ is an 

L-structure, ~Px,_.~3R~, for short ~)~3Rq~, iff ~ = 9 2 [ L  for some K- 

structure 92 ~K-9. 

The delta logic, A(L*), is defined as follows. Sentences of A(L *) are ordered 

pairs (3Rt~0,, 3R2q~2), where ::]R~, and 3R2~2 are Y(L *) sentences such that for 

all L-structures 9J~, ~ l~ : ]R,qh  or ~[I~3R2~02, but not both. We write 

~O~ ~a(L.~(3Rtq~l, 3R2q~2), for short ~T~ (3R1~,  3R2~o2), if and only if ~I~ ~ 3R~q~t. 
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If L * is identified with its set of E C  (elementary) classes, then Y(L*) is the set 

of PC (projective) classes, and A(L*) is the set of classes which are both PC and 

have PC complement.  

For more information on A-logics, see [14]. 

We now show that A(LQ~) does not satisfy interpolation for K regular, K > tO. 

(LQ, is the logic having the same syntax as LQ, but Qvq~ is interpreted as " 3  at 

least K many v such that q~".) The case K = to, is due to Friedman [5], his proof 

however used models of set theory. Barwise [1] has shown that A(LQto) = LnH 

on infinite structures, where H H  is the set of hereditarily hyperarithmetic sets. 

In particular, A(LQo) satisfies interpolation if one disregards finite structures. 

We use the following definitions. 

A linear ordering (L, < ) is K-like, K a regular cardinal, if L has cardinality K 

and every proper  initial segment of L has cardinality less than K. 

A linear ordering (L, < ) has cofinality K, K a regular cardinal, if L has a cofinal 

subset of order type K. Equivalently, L has a cofinal K-like subset. 

THEOREM 3.1. A(LQ,)  does not satisfy interpolation for K regular, K > tO. 

PROOF. L e t  

K1 = { ~  = (A, < ): °d is a linear ordering of cofinality K }, 

K2 = {~ = (A, < ): 9~ is a linear ordering of cofinality < K }. 

Clearly K, tq K2 = O. 

Since 

~l = ( A , < } @  K~ iff 

A 

~l = ( A , < ) E  K2 iff 

A 

3 U C A { ( A , < , U } ~ " <  is a 1.o. of A "  

" U  is cofinal in A "  ^ " U  is K-like"}, 

3 U C A { ( A , , < , U ) ~ " <  is a 1.o. of A "  

" U  is cofinal in A "  ^ "l U I <  K"},  

it follows g~, g2 E ~(LQ~) = E(A(LQ~)). 

Consider now any structure ~.l = (K ÷, < ,  P), where P is a finite set of relations 

on r ÷, and let L '  be the language of 9~. 

Construct a sequence (A~: s c =< K) of subsets of K + satisfying the following 

conditions. Ao -- r. Suppose At has been constructed and I A~I = K. Then A~+, is 

constructed so that: 

(i) IA¢+~I= K; 
(ii) 3x~At+,  VyEA¢ x > y ;  
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(iii) for all formulae O(x, y) in L'QK and all a E Ae, if 

(a) Pl~3xO(x,a), then P[~O(b;a)for some b EAe÷~, and if 

(b) ~[~ O, xO(x,a), then ~d~ O(b,a) for K many b E A~+~. 

If ~: is a limit ordinal, At --- (.J,,<¢A,. 

Let 23 = ?I r A~, (S = ~ I A,. Then 23, f~ < t,o. ~1 by induction on formulae. Now 

suppose K~, K2 can be interpolated in A(LQ~). In particular, let (3RI~0I, 3R2~02) 

be a A(LQ~) sentence such that ~ K ~ 3 R ~ ¢ ~ ,  and ~ E K 2 : : ) ,  

~ 3R2~2. 

If (K +, < )~ 7JRtqgi, then {K +, < ,  P )~9~  for some P, hence if 23 is constructed 

as before, 23 V ~¢~, and so ~ = 23 r < ~ 3R~¢~. But 9J~ has cofinality w, i.e. ~ E K2, 
contradiction. Similarly if (K+,<)~:IR2~02, then we can construct ~ =  ~ r  < 

3R~2  and ~J~ E K~, again a contradiction-. Thus K~, K2 cannot be interpolated 

in A(LOK). [] 

The logic L~x is constructed as for L ~ ,  except that now quantification over 

sets of variables of cardinality < A is allowed. Furthermore,  we lift any 

restriction on the size of the language L. All formulae of L ~  are to have < 2, 

free variables. 

The following result is proved similarly to Theorem 3.1. The case A = w is due 

to Friedman [5], using models of set theory. 

THEOREM 3.2. For K regular, A(L~**~) cannot be interpolated in A(L~).  In 

particular, no A(L~)  satisfy interpolation. 

PROOF. The classes K~, K: of linear orderings of cofinality K, K + respectively, 

are disjoint PC classes in A(L~.~). 

Let R be a set of relation symbols, L '  the language R t_J{< }, ~ a set of 

formulae of L ' ,  closed under subformulae, p = ]~  I, and or = p ' .  Then as in 

Theorem 3.1, we can construct ~.(, 23 < . (o  "÷, < ,  P)  where the P interpret the R, 

with cofinality (71)= ~, and cofinality (23)= r+ (also I AI  = I BI  = o-). The 

argument otherwise is similar to before. [] 

RE~AR~S. (a) In Theorem 4.2 of [15], Malitz essentially shows that 

K = { ~ = (A, U~, U2, < ,, < ~) : (U,, <,) is a well ordering, 

i =  1,2, and ( U . < , ) ~ ( U ~ , < ~ ) } ,  

is not an EC class in L~ ,  but is an EC class in A(L .... ). In particular 

L ~ A ( L ~ ) .  
(b) Since a set A has cardinality => ~ iff A has a well-ordered subset of order  

type ~ if[ there is no well-ordering of A of order type < ~, it follows by 
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induction on formulae of LO, that LO, CA(L.*,~). Thus A(LO,)CA(L..o,)  for 

all K. 

~L-LIKE OROERINGS. Any N~-like linear ordering L induces an N,-like dense 

linear ordering (1 + ~) x L, where r/ is the order type of the rationals. If L is 

already a dlo, then (1 + r/) x L ~ L. This follows in particular from the following 

classification of ~l-like dlo's due to Conway [3]. The proof is also in [8]. 

LEMMA 3.3. Every ~t~-like dlo can be expressed in the form 

qb(A)= ~ l + r / ,  if a E A ,  
. . . .  r h a ~ A ,  

where A CoJ~. For A, BCoJ, let us say A ~ B  if and only if (i) 

(A M B)  U (A ~ fq B c) includes a closed unbounded subset of oJ~, and (ii) either 

O E A  N B or O E A ~ M B ~. Then ~ ( A  ) ~- dp(B ) if and only if A ~ B. [] 

To simplify matters a little, we will assume that all Nrlike dlo's have a first 

element; i.e., are of the form @(A) where 0 E  A C~o~. 

We investigate which logics distinguish, and which fail to distinguish, such 

dlo's. (By a back and forth type argument, they are all elementarily equivalent in 

L~, . )  In particular, we show that  each isomorphism type is a A(L~,~) class 

assuming GCH, but all such dlo's are elementarily equivalent in A(L~,~Q). 

By Lmin, we will mean 1 + (r/ × ~o,), i.e. qb({ 0 }). 

THEOREM 3.4. The isomorphism type of each ~,-like dlo is a E(L,~o) class 

and a 1-I(LI2~,~) class. The isomorphism type of Lm,, is a E(LQ) class, and the 

class of L ' s #  Lm,n is a Iq(LQ) class. 

PROOF. For each ~: < oJ~, there is an Lo,,~ formula ~e(v) such that for (L, < ) a 

1.o. and X CL, (L, < , X ) l  = ¢~(a) if and only if {b : b < a ^ b ~ X} has order type 

Let o ~ = { U :  UC{~::sc < o~alim(sC)}}. For UEo~,  let Ov be the following 

L~o, sentence in the language of (L, < ,  X), where X is a unary relation. 

"(L, < )  is a dlo with a first element" 

^ " X  is cofinal in (L, < )" 

^Vx(x¢~ X ~ : l y  < x V z ( y  < z < x ~ z ~  X) 

(i.e., X is closed relative to (L, < )) 
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A rA 3 X e ~ ( x ) A V x ~ X W  ~(X) 
~ < ~  ,~<oh 

^ /A 3 x [ ~ ( x ) ^ ' d y < x 3 z ( y < z < x A V /  
~ O  v<~ 

A/A 
~ U  
lim(tj) 

(i.e., q~(x) ::> x is the limit of {y : ~,(y)A u < ~:}) 

3y < x v z ( y  < z < x - - ,  
~,<~ 

(i.e., ¢~(x) ~ x is not the limit of {y: ~p~(y)A u < ~}, and 

so by the third conjunct, this set does not have a limit 

point in L). 

From Lemma 3.3, if ( L , < )  is an l~-like dlo, 0 E A  C Wl, and U = 

{~::~ E A Alim~:}, then ! L , < ) ~ C P ( A ) i f f  (L ,<)~3XOu iff 

(L, < ) # V X  /A "-1 Or. 
vE~; 
V~ZU 

Notice that I~:1 = 2 '~,. 

But we can express in both E(L~,~) and H(L,~) ,  that (L, < ) is an N~-Iike dlo. 

(Basically, this is possible because in both Y.(L,+,o) and H(L,++o,), one can express 

the notion of having cardinality A for each A _- K.) Thus we have proved the first 

sentence of the theorem. 

(L, < ) - Lm~, if and only if (L, < ) is an N~-like dlo with a cofinal subset X, such 

that no member of L is a limit point of X. Hence the isomorphism type of Lm~, is 

a E(LQ) class. Finally, the class of N~-like dlo's is an LQ class, and so the class of 

L ' s ~  Lm~. is a I I (LQ) class. [] 

THEOREM 3.5. All lgl-like dlo ' s not isomorphic to L,,~, are E(L,,oQ ) elemen- 

tarily equivalent. If an Nl-like dlo belongs to some Y ( L ~ Q )  class, then so does 

Lm,, (but not conversely by the previous theorem). In particular, all N~-like dlo ' s 

are A(L,~,~Q) elementarily equivalent. 

PROOF. The proof uses models of set theory. Let ~ = (L, < ) = qb(K)~ =lR~, 

where =lR~ E E(L~,,~Q), and ~ #  L,,~,. Then K is stationary. We may assume 

TC({3R~})E  HC, where HC is the set of hereditarily countable sets. 

Let ~ ' =  qb(K') be any l,l~-like dlo. We will show LP~ 3 R~ .  

Take A < V such that ]A I = no, ~, K E A, TC({3R~ }) E A. Using Theorem 



Vol. 24, 1976 MODEL THEORY VIA SET THEORY 303 

1.2, construct a sequence ~1~ = (A~, E~), ~ < to~, such that: (i) 9l,, = (A, E ); (ii) 

~?~+, > ?l~, I A~.~ 1= N,,, all ordinals below w]~, remain fixed, to] ~, is enlarged, 
.,, 

to,~ ~, contains a least new ordinal ae if ~: E K '  and in this case a~ E (K'~+')E~+,, 

" " -- ~<e,l ~ if ~ is a to'~," contains no least new ordinal if ~E K , and (iii) ~[~ I,.) ~'~ limit 

ordinal. Let ~ = (B, F ) =  Ue.:,oPl~. 
Now ~ =  ::]Rq~ in the real world and hence in ~ .  So in ~ ,  (37, P ) ~  ~ for some 

P. Therefore (37, P)~/= q~ in the real world, since q~ E E Lq, I(o~'~)v I = 1~,,, and 

I (to'~)~ [ = ~I,. Therefore  37~ i='::lRq~. 

In ~ ,  37 is an ~ - I ike  dlo, so 37v is an ~ - l i ke  dlo in the real world, as all these 

notions are absolute. Also, the notion of having the order  type of the rationals is 

absolute. We show ~----37 ' .  

We have 

37~ = ~] 1+*/,  if k C K F  
k~tJ,'~ "O, if kEKF 

I ~ l + u ,  if kEKF~ 
, ,~ ,  tk~t~'-,~+~F-t~",'~F 77, if k~KrJ 

l + r / ,  if aEK'  
. . . . .  r t, if o ~  K '  

(since { - }  is a countable dlo with no last 

element,  and having a first e lement  if and only 

if a E g ' )  

= ~b(K'). [] 
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